A PTAS for minimum connected dominating set in 3-dimensional Wireless sensor networks

Zhao Zhang • Xiaofeng Gao • Weili Wu • Ding-Zhu Du

Received: 8 July 2008 / Accepted: 27 November 2008 / Published online: 14 December 2008
© Springer Science+Business Media, LLC. 2008

Abstract

When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. It is known that for the minimum connected dominating set in unit disk graph, there is a polynomial time approximation scheme (PTAS). However, that construction cannot be extended to obtain a PTAS for unit ball graph. In this paper, we will introduce a new construction, which gives not only a PTAS for the minimum connected dominating set in unit ball graph, but also improves running time of PTAS for unit disk graph.

Keywords Wireless sensor network • Connected dominating set • Unit ball graph • PTAS

1 Introduction

Virtual backbone in wireless sensor network has a wide range of applications (cf [3] and references there). A virtual backbone is a subset of nodes D such that non-adjacent nodes can communicate with each other through the nodes in D. Modeling the wireless sensor network as a graph, the virtual backbone is exactly a connected dominating set. A dominating set of a graph G is a subset D of vertices such that every vertex x in $V(G) \backslash D$ is adjacent to a vertex y in D. Vertex x is said to be dominated by y, or y is said to dominate x. A vertex

[^0]$y \in D$ dominates itself. A connected dominating set is a dominating set D such that the subgraph of G induced by D, denoted by $G[D]$, is connected. In the real world, one often expects the size of the virtual backbone as small as possible, in order to save the energy of transmissions, lessen the cost of construction, avoid broadcast storm (that is, unbearable interferences caused by too many transmissions at the same time) etc. Hence we are faced with a minimum connected dominating set problem (MCDS): to find a connected dominating set with the minimum cardinality. The MCDS has been studied extensively in the literatures [2,11, 12, 14-16, 18].

In practice, the sensors are often assumed to be homogeneous, that is, they have omnidirectional antennas with the same transmission range. In this case, the topology of the three-dimensional wireless sensor network can be modeled as a unit ball graph. In an unit ball graph (UBG), each vertex corresponds to a point in the space, two vertices are adjacent if and only if the Euclidean distance between their corresponding points is less than or equal to one. In other words, a vertex u is adjacent with a vertex v if and only if u is within the transmission range of v, which has been scaled to one. When restricted to the plane, a unit ball graph degenerates to a unit disk graph (UDG). Compared with the large number of studies on UDGs, the studies on UBGs are relatively much less. There are cases in which threedimensional models are needed, such as under-water sensor systems, outer-space sensor systems, notebooks in a multi-layered buildings, etc.

For MCDS in general graphs, it was proved in [8] that for any $0<\rho<1$, there is no polynomial time $\rho \ln n$-approximation unless $N P \subseteq \operatorname{DTIME}\left(n^{O(\ln n)}\right)$, where n is the number of vertices. A greedy $(\ln \Delta+3)$-approximation [13] and a greedy $(\ln \Delta+2)$-approximation [8,13] were given, where Δ is the maximum degree of the graph. When restricted to UDG, the MCDS problem is still NP-hard [7]. Hence computing an MCDS in a UBG is also NP-hard. Distributed constant-approximations for MCDS in UDG were studied in [1,5,10, 17], etc. Also by distributed strategy, Butenko and Ursulenko [4] gave a 22 -approximation for MCDS in UBG. As to centralized algorithm for CDS in UDG, Cheng et al. [6] gave a polynomial time approximation scheme (PTAS), that is, for any $\varepsilon>0$, there exists a polynomial-time $(1+\varepsilon)$-approximation. The question is: can their method be generalized to obtain a PTAS for MCDS in UBG? The answer is 'no', since their proof depends on a geometrical property which holds in the plane but is no longer true in the space.

In this paper, we present a PTAS for UBG. The method of analyzing the performance ratio is new. In fact, this method can be used to compute CDS for any n-dimensional unit ball graph. Furthermore, when our method is applied to UDG, the running time can be improved, compared with the algorithm presented in [6].

In Sect.2, the algorithm is presented, the correctness is proved, the time complexity is analyzed. In Sect. 2.1, we prove that this algorithm is a PTAS. A conclusion is given in Sect. 3.

2 The algorithm

In this section, we present an algorithm for MCDS in UBG. The algorithm uses partition technique combined with a shifting strategy (which was introduced by Hochbaum and Maass [9]).

Let $Q=\{(x, y, z) \mid 0 \leq x \leq q, 0 \leq y \leq q, 0 \leq z \leq q\}$ be a minimal three-dimensional cube containing all the unit balls. For a given positive real number $\varepsilon<1$, let m be an integer with $m=\lceil 300 \rho / \varepsilon\rceil$, where ρ is the performance ratio of a constant-approximation for MCDS in UBG, for example $\rho=22$ by the algorithm given by Butenko and Ursulenko [4].

Set $p=\lfloor q / m\rfloor+1$, and $\tilde{Q}=\{(x, y, z) \mid-m \leq x \leq m p,-m \leq y \leq m p,-m \leq z \leq m p\}$. Divide \tilde{Q} into $(p+1) \times(p+1) \times(p+1)$ grid such that each cell is an $m \times m \times m$ cube (each cube is half cloesed and half open, including the back, left, and bottom sides, excluding the front, right, and top sides). Denote this partition as $P(0)$. For $a=0,1, \ldots, m-1, P(a)$ is the partition obtained by shifting $P(0)$ such that the left-bottom-hind corner of $P(a)$ is at the coordinate $(a-m, a-m, a-m)$. For each cell e, the boundary region B_{e} of e is the region contained in e such that each point in this region is at most distance 3 from the boundary of e. The central region C_{e} of e is the region of e such that each point is at least distance 2 away from the boundary of e. Note that B_{e} and C_{e} have an overlap.

Algorithm Input: The geometric representation of a connected unit ball graph G and a positive real number $\varepsilon<1$.

Output: A connected dominating set D of G.

1. Let $m=\lceil 300 \rho / \varepsilon\rceil$.
2. Use the ρ-approximation algorithm to compute a connected dominating set D_{0} of G. For each $a \in\{0,1, \ldots, m-1\}$, denote by $D_{0}(a)$ the set of vertices of D_{0} lying in the boundary region of $P(a)$. Choose a^{*} with the minimum $\left|D_{0}(a)\right|$.
3. For each cell e of $P\left(a^{*}\right)$, denote by G_{e} the subgraph of G induced by the vertices in the central region C_{e}. Compute a minimum subset D_{e} of vertices in e, such that
for each component H of $G_{e}, G\left[D_{e}\right]$ has a connected component dominating H.
4. Let $D=D_{0}\left(a^{*}\right) \cup \bigcup_{e \in P\left(a^{*}\right)} D_{e}$.

The following lemma shows the correctness of the algorithm.
Lemma 1 The output D of the algorithm is a CDS of G.
Proof We first show that D is a dominating set. For each vertex $x \in V(G)$, suppose x is in cell e. If $x \in C_{e}$, then x is dominated by D_{e}. If $x \in e \backslash C_{e}$, then x is in the region of e at distance less than two from the boundary of e. If $x \in D_{0}$, then $x \in D_{0}\left(a^{*}\right)$. If $x \notin D_{0}$, then the vertex $y \in D_{0}$ which dominates x is in $D_{0}\left(a^{*}\right)$. By the arbitrariness of x, D is a dominating set of G.

Next, we show that $G[D]$ is connected.
Suppose F_{1}, F_{2} are two components of $G\left[D_{0}\left(a^{*}\right)\right]$ which can be connected by D_{0} through the central region of some cell e. Then there exist two vertices $x_{1} \in V\left(F_{1}\right) \cap B_{e} \cap C_{e}$ and $x_{2} \in V\left(F_{2}\right) \cap B_{e} \cap C_{e}$ such that x_{1}, x_{2} are in a same component H of G_{e}. By step 3 of the algorithm, x_{1} and x_{2} are connected through D_{e}, and thus F_{1} and F_{2} are also connected through $D_{e} \subseteq D$. We have shown that any components of $G\left[D_{0}\left(a^{*}\right)\right]$ are connected in $G[D]$.

Let \tilde{G} be the component of $G[D]$ containing all vertices in $D_{0}\left(a^{*}\right)$. If $\tilde{G} \neq G[D]$, then there exists a cell e and a component R of $G\left[D_{e}\right]$ such that $V(R) \cap D_{0}\left(a^{*}\right)=\emptyset$ and R is not adjacent with any vertex in $D_{0}\left(a^{*}\right)$. Let x be a vertex in D_{0} such that x dominates some vertex $y \in V(R)(y$ may coincide with $x)$. Since $x \notin D_{0}\left(a^{*}\right)$, we have $x \in e \backslash B_{e}$. Hence $y \in C_{e}$. Let H be the connected component of G_{e} containing y. By step 3 of the algorithm, we see that R dominates H. Since $G\left[D_{0}\right]$ is connected, there is a path in $G\left[D_{0}\right]$ connecting x to the other parts of G outside of cell e. Such a path must contain a vertex $z \in D_{0} \cap B_{e} \cap C_{e} \subseteq D_{0}\left(a^{*}\right)$. Note that z is also in H. Hence there is a vertex w in $V(R)$ dominating z, contradicting that R is not adjacent with any vertex in $D_{0}\left(a^{*}\right)$. Hence $\tilde{G}=G[D]$, and thus $G[D]$ is connected.

The next lemma follows from the well-known fact that any dominating set always has two connected components which are at most three hops away from each other (see for example [8]).

Lemma 2 For any dominating set D in a connected graph, at most $2(|D|-1)$ vertices are needed to connect D. In particular, $\left|D_{2}\right| \leq 3\left|D_{1}\right|-2$, where D_{1}, D_{2} are, respectively, a minimum dominating set and a minimum CDS.

The next lemma shows that the time complexity of the algorithm is polynomial in n and ε.
Lemma 3 The above algorithm runs in time $n^{O\left(1 / \varepsilon^{3}\right)}$.
Proof Clearly, the most time-consuming part is the third step. Since any vertex in a $\sqrt{3} / 3 \times$ $\sqrt{3} / 3 \times \sqrt{3} / 3$ cube dominates any other vertices in the same cube, we see that a minimum dominating set of e uses at most $(\sqrt{3} m)^{3}$ vertices. By Lemma $2,\left|D_{e}\right| \leq 3(\sqrt{3} m)^{3}$. Hence the exhaust search time takes at most $\sum_{k=0}^{(3 \sqrt{3} m)^{3}}\binom{n_{e}}{k}=n_{e}^{O\left(m^{3}\right)}$ to compute D_{e}, where n_{e} is the number of vertices in e. It follows that the total time complexity is bounded by $\sum_{e \in P\left(a^{*}\right)} n_{e}^{O\left(m^{3}\right)}=n^{O\left(m^{3}\right)}=n^{O\left(1 / \varepsilon^{3}\right)}$.

2.1 The performance ratio

In this section, we show that our algorithm is a PTAS for CDS in UBG. For this purpose, we need the following two lemmas.

For a path P in G, the length of P, denoted by $\operatorname{len}(P)$, is the number of edges in P. Let H be a subgraph of G. For two subgraphs H_{1} and H_{2} of G, the distance between H_{1} and H_{2} in H is $\operatorname{dist}_{H}\left(H_{1}, H_{2}\right)=\left\{\operatorname{len}(P) \mid P\right.$ is the shortest path connecting H_{1} and H_{2} in $\left.H\right\}$. In another word, if $\operatorname{dist}_{H}\left(H_{1}, H_{2}\right)=k$, then H_{1} and H_{2} can be connected through at most $k-1$ vertices of H.

Lemma 4 Let H be a connected subgraph of G, and D be a subset of $V(G)$ dominating H. If $G[D]$ does not contain a connected component dominating H, then there exist two components R and K of $G[D]$ such that $\operatorname{dist}_{H}(R, K) \leq 3$.

Proof Let $H_{1}, H_{2}, \ldots, H_{k}(k \geq 2)$ be a minimum set of components of $G[D]$ the union of which dominates H. The 'minimum' ensures that every H_{i} is adjacent with H. Since H is connected, we see that $\bigcup_{i=1}^{k} H_{i}$ can be connected through vertices in H. Choose H_{i} and H_{j} such that $\operatorname{dist}_{H}\left(H_{i}, H_{j}\right)$ is minimum. Let $P=x_{0} x_{1} \ldots x_{t}$ be the shortest path connecting H_{i} and H_{j} such that $x_{1}, \ldots, x_{t-1} \in V(H)$ and $x_{0} \in V\left(H_{i}\right), x_{t} \in V\left(H_{j}\right)$. Suppose $t \geq 4$. Let H_{ℓ} be a component dominating x_{2}. Then $\ell \neq i$ and $\operatorname{dist}_{H}\left(H_{\ell}, H_{j}\right)<\operatorname{dist}_{H}\left(H_{i}, H_{j}\right)$, a contradiction.

Lemma 5 For any vertex u in a unit ball graph G, the neighborhood $N_{G}(u)$ contains at most 12 independent vertices.

Proof The result can be obtained by transforming the problem into the famous GregoryNewton Problem concerning about kissing number [19]. The kissing number is the maximum number of unit balls that can simultaneously touch the surface of a unit ball ('touch' means two balls have exactly one point in common). Let $S(u)$ be the unit ball with center u, and $\left\{x_{1}, \ldots, x_{t}\right\}$ be a maximum set of independent vertices in $S(u)$. For each $i=1, \ldots, t$, draw a radial r_{i} with origin u which goes through x_{i}. Suppose r_{i} intersects the surface of $S(u)$ at point \tilde{x}_{i}. Let S_{i} be a unit ball touching $S(u)$ at \tilde{x}_{i}. Since x_{i} 's are independent, the angle between any two radials is at least $\pi / 3$. Hence S_{i} 's are non-intersecting. It follows that t is at most the kissing number, which is 12 .

Fig. 1 When the partition shifts, each vertex falls into at most 12 boundary regions
Next, we analyze the performance ratio of the algorithm.
Theorem 1 The algorithm is a $(1+\varepsilon)$-approximation for CDS in $U B G$.
Proof Let D^{*} be an optimal CDS of G.
Note that when a runs over $0,1, \ldots, m-1$, each vertex belongs to at most 12 boundary regions of $P(a)$'s (see Fig. 1). Hence

$$
\left|D_{0}(0)\right|+\left|D_{0}(1)\right|+\cdots+\left|D_{0}(m-1)\right| \leq 12\left|D_{0}\right|,
$$

and thus

$$
\begin{equation*}
\left|D_{0}\left(a^{*}\right)\right| \leq \frac{12}{m}\left|D_{0}\right| \leq \frac{12 \rho}{m}\left|D^{*}\right| \leq \frac{\varepsilon}{25}\left|D^{*}\right| . \tag{2}
\end{equation*}
$$

In the following, we are to add some vertices to D^{*} such that the resulting vertex set \tilde{D} satisfies:
(i) $|\tilde{D}| \leq\left|D^{*}\right|+24\left|D_{0}\left(a^{*}\right)\right|$, and
(ii) for each cell e and each connected component H of $G_{e}, G[\tilde{D} \cap e]$ contains a connected component dominating H.

Before showing how to construct \tilde{D}, we first show that as long as this can be done, then the theorem is proved. In fact, since D_{e} is a minimum subset of e satisfying the requirement (1) and $\tilde{D} \cap e$ satisfies (ii), we have

$$
\left|D_{e}\right| \leq|\tilde{D} \cap e| .
$$

Then it follows from condition (i) and inequality (2) that

$$
\begin{align*}
\left|\bigcup_{e \in P\left(a^{*}\right)} D_{e}\right| & =\sum_{e \in P\left(a^{*}\right)}\left|D_{e}\right| \leq \sum_{e \in P\left(a^{*}\right)}|\tilde{D} \cap e| \tag{3}\\
& =|\tilde{D}| \leq\left|D^{*}\right|+24\left|D_{0}\left(a^{*}\right)\right| \leq\left(1+\frac{24 \varepsilon}{25}\right)\left|D^{*}\right| .
\end{align*}
$$

Combining inequalities (2) and (3), we have

$$
|D| \leq\left|\bigcup_{e \in P\left(a^{*}\right)} D(e)\right|+\left|D_{0}\left(a^{*}\right)\right| \leq(1+\varepsilon)\left|D^{*}\right|,
$$

where D is the output of the algorithm. This proves the theorem.
In the following we show how to construct \tilde{D} satisfying conditions (i) and (ii).
We first claim that for any cell e and any component H of G_{e}, H is dominated by $D^{*} \cap e$. In fact, any vertex $x \in V(H)$ is dominated by some vertex $y \in D^{*}$. Since $x \in C_{e}$, we have $y \in e$.

Set $\tilde{D}_{e}^{*}=D^{*} \cap e$. Suppose \tilde{D}_{e}^{*} does not satisfy condition (ii). Then there is a component H of G_{e} such that H is not dominated by one connected component of $G\left[\tilde{D}_{e}^{*}\right]$. By Lemma 4, there are two components R and K of $G\left[\tilde{D}_{e}^{*}\right]$ such that $\operatorname{dist}_{H}(R, K) \leq 3$. That is, R and K can be connected through at most two vertices in $V(H) \backslash \tilde{D}_{e}^{*}$. Add these vertices into \tilde{D}_{e}^{*} to merge R and K. Continue this procedure until \tilde{D}_{e}^{*} satisfies condition (ii). Suppose k mergences are executed. Then the resulting \tilde{D}_{e}^{*} satisfies

$$
\begin{equation*}
\left|\tilde{D}_{e}^{*}\right| \leq\left|D^{*} \cap e\right|+2 k . \tag{4}
\end{equation*}
$$

Next, we use vertices in $D_{0}\left(a^{*}\right) \cap e$ to compensate for the $2 k$ term of inequality (4). Suppose the components are merged in the order that: H_{1} is merged with H_{2}, H_{3} is merged with $H_{4}, \cdots, H_{2 k-1}$ is merged with $H_{2 k}$. To simplify the presentation of the idea, we first assume that the H_{i} 's are all distinct components of the original $G\left[\tilde{D}_{e}^{*}\right]$. Denote by I_{e} the region of e between distance 1 and 2 from the boundary of e. For each $i=1,2, \cdots, k$, let x_{i} be a vertex in $V\left(H_{2 i-1}\right) \cap I_{e}$. Such x_{i} exists since $H_{2 i-1}$ dominates some vertex in H which is a component in the central region of e (hence $H_{2 i-1}$ is within distance 1 from the central region), and $G\left[D^{*}\right]$ is connected (hence $H_{2 i-1}$ is accessible from the outer side of e). Because D_{0} is a dominating set of G, there is a vertex $z_{i} \in D_{0}$ dominating x_{i}. Since $x_{i} \in I_{e}$, we have $z_{i} \in B_{e}$, and thus $z_{i} \in D_{0}\left(a^{*}\right) \cap e$. Note that for $i \neq j$, it is possible that $z_{i}=z_{j}$. However, in this case, x_{i} and x_{j} are independent since they are in different components of $G\left[\tilde{D}_{e}^{*}\right]$. Hence by Lemma 5, a vertex serves at most 12 times as z_{i} 's. Thus we have shown that

$$
\begin{equation*}
k \leq 12\left|D_{0}\left(a^{*}\right) \cap e\right| . \tag{5}
\end{equation*}
$$

Next, consider the case that there are some repetitions among the H_{i} 's. For example, suppose H_{3} is the component of the new $G\left[\tilde{D}_{e}^{*}\right]$ obtained by merging H_{1} and H_{2}. Since x_{1} is chosen to be in $V\left(H_{1}\right) \cap I_{e}$, we can choose $x_{3} \in V\left(H_{2}\right) \cap I_{e}$. In general, we are always able to choose x_{i} 's such that they are in different components of the original $G\left[\tilde{D}_{e}^{*}\right]$. Hence (5) holds in any case. Combining (5) with (4), we have

$$
\begin{equation*}
\left|\tilde{D}_{e}^{*}\right| \leq\left|D^{*} \cap e\right|+24\left|D_{0}\left(a^{*}\right) \cap e\right| . \tag{6}
\end{equation*}
$$

Let \tilde{D} be the union of the modified \tilde{D}_{e}^{*} 's, where e runs over all cells of $P\left(a^{*}\right)$. Then

$$
\begin{equation*}
|\tilde{D}|=\sum_{e \in P\left(a^{*}\right)}\left|\tilde{D}_{e}^{*}\right| \leq \sum_{e \in P\left(a^{*}\right)}\left(\left|D^{*} \cap e\right|+24\left|D_{0}\left(a^{*}\right) \cap e\right|\right)=\left|D^{*}\right|+24\left|D_{0}\left(a^{*}\right)\right| \tag{7}
\end{equation*}
$$

Hence \tilde{D} satisfies requirements (i) and (ii). This completes the proof.

3 Conclusion

We presented a construction and an analysis of PTAS for the minimum connected dominating set in unit ball graphs. This construction is different from that in [6] for the minimum connected dominating set in unit disk graphs. In fact, the construction in [6] cannot be extended to three-dimensional space since a process of merging many parts of connected components into one in boundary area cannot work. Actually, our construction can be applied to unit ball graphs in n-dimensional space for any $n \geq 1$. An important observation is that the number of independent vertices in an n-dimensional unit ball is upper bounded by a constant (depending only on n). In addition, when applied to unit disk graph, the $(1+\varepsilon)$-approximation constructed in this paper runs in time $n^{O\left(1 / \varepsilon^{2}\right)}$ while the $(1+\varepsilon)$-approximation constructed in [6] runs in time $n^{O\left(\left(1 / \varepsilon^{2}\right) \ln (1 / \varepsilon)\right)}$. Therefore, our construction also improves the running time of PTAS for unit disk graph.

References

1. Alzoubi, K.M., Wan, P., Frieder, O.: Message-optimal connected dominating sets in mobile ad hoc networks. In: Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking and computing. Lausanne, Switzerland (2002)
2. Bharghavan, V., Das, B.: Routing in ad hoc networks using minimum connected dominating sets. International Conference on Communication, Montreal, Canada (1997)
3. Blum, J., Ding, M., Cheng, X.: Applications of Connectd Dominating Sets in Wireless Netwoks. In: Du D.-Z. Pardalos P. (eds.) Handbook of combinatorial Optimization, pp. 329-369. Kluwer Academic Publisher (2004)
4. Butenko, S., Ursulenko, O.: On minimum connected dominating set problem in unit-ball graphs. (submitted)
5. Cadei, M., Cheng, M.X., Cheng, X., Du, D.: Connected domination in ad hoc wireless networks. In: Proceedings of the Sixth International Symposium on Mobile ad hoc Networking and Computing, Lausanne, Switzerland (2002)
6. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation scheme for minimum connected dominating set in ad hoc wireless networks. Networks 42, 202-208 (2003)
7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86, 165-177 (1990)
8. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374-387 (1998)
9. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM. 32, 130-136 (1985)
10. Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C., Wu, W.: Improving construction for connected dominating set with Steiner tree in wireless sensor networks. J. Glob. Optim. 35, 111-119 (2006)
11. Peter Chen, Y., Liestman, A.L.: Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proceedings of the third ACM International Symposium on Mobile ad hoc networking and computing. Lausanne, Switzerland (2002)
12. Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of IEEE INFOCOM'97, pp. 261-268 (1997)
13. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.: A greedy approximation for minimum connected dominating set. Theor. Comput. Sci. 329, 325-330 (2004)
14. Salhieh, A., Weinmann, J., Kochha, M., Schwiebert, L.: Power efficient topologies for wireless sensor networks. In: ICPP'2001, pp. 156-163 (2001)
15. Sivakumar, R., Das, B., Bharghavan, V.: An improved spine-based infrastructure for routing in ad hoc networks. In: IEEE Symposium on Computer and Communications. Athens, Greece (1998)
16. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination based broadcasting algorithms in wireless networks. In: Proceedings of IEEE Hawaii International Conference on System Sciences (2001)
17. Wan, P., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. In: Proceedings of Infocom’ 2002 (2002)
18. Wu, J., Li, H.L.: On calculating connected dominating set for efficient routing in ad hoc wireless networks. In: Proceedings of the 3rd ACM International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 7-14 (1999)
19. Zong, C.: Shere packings. Springer, New York (1999)

[^0]: This work is supported by National Natural Science Foundation of China (60603003), the Key Project of Chinese Ministry of Education (208161), Scientific Research Program of the Higher Education Institution of Xinjiang, funded by the National Science Foundation under grant CCF-0514796 and CNS-0524429. The work was completed when the first author was visiting Department of Computing Science, the University of Texas at Dallas.
 Z. Zhang (\boxtimes)

 College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, People’s Republic of China
 e-mail: zhzhao@xju.edu.cn
 X. Gao - W. Wu • D.-Z. Du

 Department of Computer Science, University of Texas at Dallas, Richardson TX 75080, USA

